

Verification Report for

Project	: Rainwater Harvesting Project by SIIPL, Pune, India.
UCR Project ID	: 346

Name of Verifier	SQAC Certification Pvt. Ltd.
Date of Issue	August 28, 2023
Project Proponent	M/s Serum Institute of India Pvt Ltd. (SIIPL), Pune, Maharashtra.
UCR Project Aggregator	Egis India Consulting Engineers Pvt Ltd.
Work carried by	Mr. Santosh Nair & Ms. Sheetal Wader
Work reviewed by	Mr. Praful Shinganapurkar

Summary:

SQAC Certification Pvt. Ltd. has performed verification of the "Rainwater Harvesting Project by SIIPL, Pune, India". The project activity by the Project Proponent is the installation and operation of rooftop rainwater and ground surface runoff harvesting and storage systems that help conserve unutilized water (rainwater) for future requirements.

The project activity meets the following UN SDG's:

Verification for the period: 15/03/2017 to 31/12/2022.

In our opinion, the total RoU's over the crediting / verification period stated in the Project Concept Note and Monitoring Report, PCNMR submitted to SQAC are found to be correct and in line with the UCR guidelines.

The verification was done onsite by way of site visit, interviews, document verification and submission through emails.

Accredited by 5 Jupiter House, Callera Park, Aldermaston, Reading Berkshire RG7 8NN, United Kingdom (UK).

SQAC is able to certify that the RoU's from the Rainwater Harvesting Project by SIIPL, Pune, India, (UCR ID - 346) for the period 15/03/2017 to 31/12/2022 amounts to **14,10,331** RoUs

Detailed Verification Report:

The project activity is pre-approved under the UCR RoU program for the following scope:

• Scope 2 (Measures for conservation and storage of unutilized water for future requirements.)

Purpose:

The project, Rainwater Harvesting Project by SIIPL, Pune India, is located at Village Manjri, District Pune, State Maharashtra, Country India. The project activity is the installation and operation of rooftop rainwater and ground surface runoff harvesting measures involving the collection and storage of the collected runoff in three (3) water storage tanks of 2000 m³ capacity each with runoff storage overflow from the tanks being diverted to raw water holding tanks. Hence the total installed capacity of the project activity is six (6) MLD. In the absence of the project activity, the PP would have installed bore wells that would have depleted the local groundwater resources and/or continued to use existing drinking water resources in the surrounding area.

Activity	Water Requirement (KL/d)
Potable water (for further purification)	2000
Cooling Tower	1800
Boiler	500
Domestic Use (washrooms, canteen, drinking)	150
Gardening	600
Total	5050 KL/d (~5MLD)

The Project Proponent's daily water requirement is as follows:

The harvested rainwater runoff is further purified through Ultrafiltration + Reverse Osmosis + UV to generate safe drinking water. This potable water complies with all national and international standards like USEPA/WHO/BIS-10500.

The project activity achieves the following key water and sanitation related Sustainable Development Goals under the United Nation (UN-SDGDs):

- ensures universal and equitable access to safe and affordable drinking water for all by 2030,
- ensures halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally by 2030,
- substantially increases water-use efficiency across all sectors and ensures sustainable

withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity by 2030, and;

• expands capacity-building support within India in water and sanitation-related activities and programs, including water efficiency, wastewater treatment, recycling and reuse technologies by 2030.

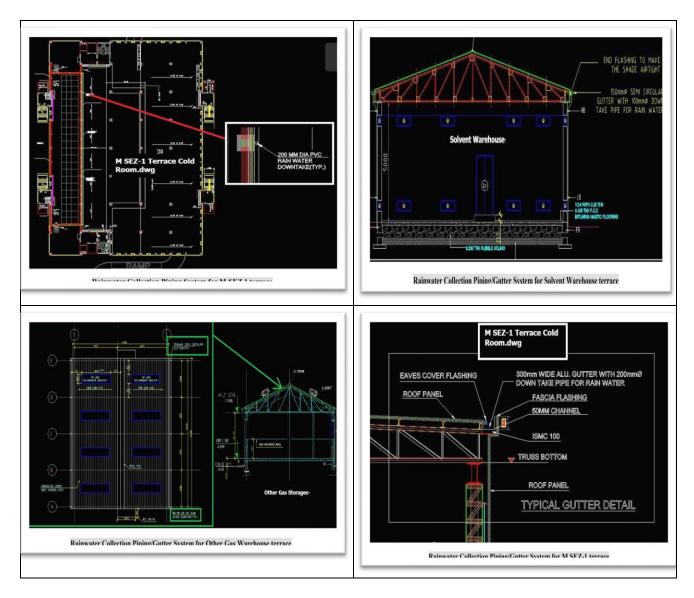
Sustainable Development	Most relevant SDG	Indicator (SDG Indicator)
Goals Targeted	Target/Impact	
13 CLIMATE	13.2: Integrate climate change measures into national policies, strategies and planning.	Rainwater harvesting is an effective solution for climate change adaptation because it helps mitigate the impacts of droughts, floods, and other extreme weather events that are becoming increasingly common due to climate change. The quantity of rainwater being harvested and reused by the PP is the SDG indicator.
1 ND POVERTY	1.4: By 2030, ensure that all men and women, in particular the poor and the vulnerable, have equal rights to economic resources, as well as access to basic services, ownership and control over land and <u>other</u>	The PP prevents unequal distribution of natural groundwater resources -which <u>prevents poverty</u> of natural economic resources (groundwater). The PP ensures that the citizens of Pune get a chance to preserve their natural groundwater resources for future generations since PP is harvesting rainwater
1 - End poverty in all its forms everywhere	formsofproperty,inheritance, naturalresources,appropriatenewtechnologyandfinancialservices,including microfinance.	runoff which is currently unutilized by the local industry. The PP could have alternately dug fresh borewells or used existing drinking water sources for their captive water requirements.

3 GOOD HEALTH AND WELL-BEING	3.9: By 2030, substantially reduce the number of deaths and illnesses from hazardous chemicals and air, water and soil pollution and contamination.	The PP showcases how rainwater harvesting can prevent depletion of natural water reserves and prevent water scarcity during droughts. The PP ensures water availability in water-scarce zones that help promotes healthy lives and well-
3 – Ensure healthy lives and promote well-being for all at all ages.		being.
6 CLEAN WATER AND SANITATION 5 - Ensure access to water and sanitation for all.	6.3: By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally.	The PP has showcased harvesting and safe reuse of <u>1410 million liters</u> within the industry of rainwater runoff during this monitored period.
8 DECENT WORK AND ECONOMIC GROWTH 8 – Promote inclusive and sustainable economic growth, employment and decent work for all.	 8.5: By 2030, achieve full and productive employment and decent work for all women and men, including for young people and persons with disabilities, and equal pay for work of equal value. 8.6 By 2020, substantially reduce the proportion of youth not in employment, education or training. 	Number of jobs created. Number of people trained.

	17.7: Promote the	PP will monetize the water credits
17 PARTNERSHIPS FOR THE GOALS	development, transfer,	via the virtual water footprint
FUR THE GUALS	dissemination and	market internationally.
	diffusion of	
	environmentally sound	
	technologies to	
	developing countries on	
17 – Strengthen the means	favourable terms	
of implementation and	including on	
revitalize the global	concessional and	
partnership for sustainable	preferential terms, as	
development	mutually agreed.	

2000 m3 Rainwater Collection Tanks

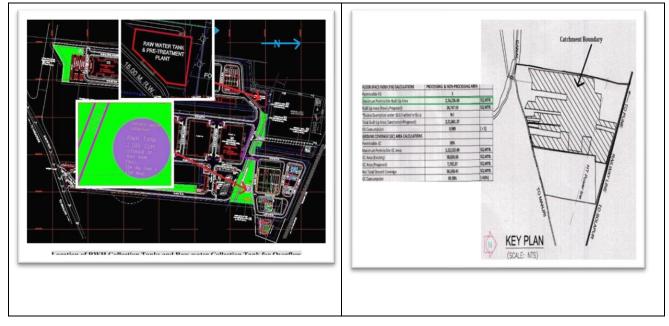
Scope:


The scope covers verification of RoUs from the project - Rainwater Harvesting Project by SIIPL, Pune, India, (UCR ID – 346)

Criteria:

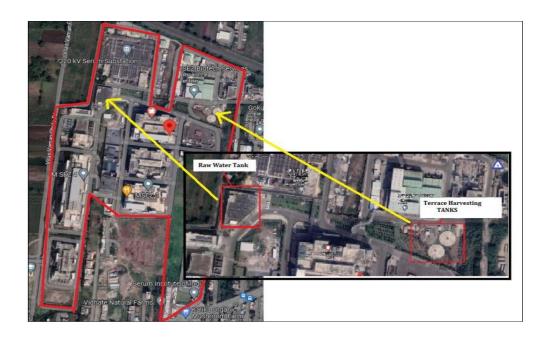
Verification criteria is as per the requirements of UCR RoU program for the scope – 2.

Description of project:


The details of the rooftop piping, allied harvesting systems and project activity system flow is as below:

Treatment Process

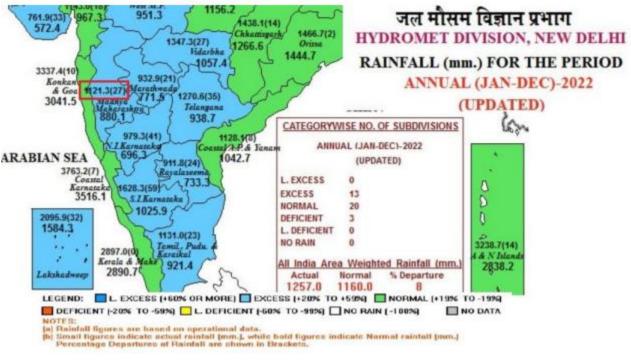
The quality of the treated rainwater is checked regularly by in-house labs. This rainwater run off is further purified through a combination of ultrafiltration, reverse osmosis and UV light to create safe drinking water that complies with all national and international standards such a like USEPA/WHO/BIS-10500.



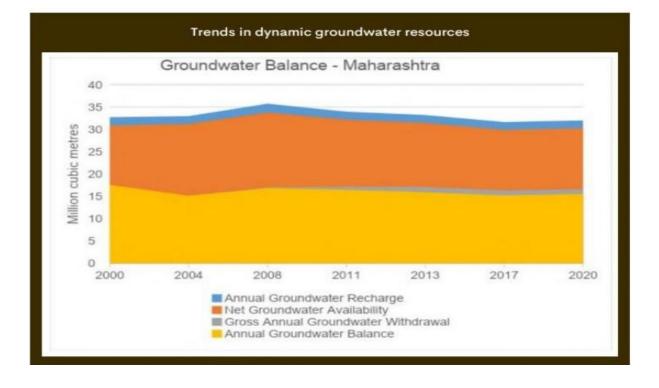
	No : TUV(I)/3732/22-2: 27 Jun 2022	3/0062202054	TEST REP	PORT		TUV India PRIVATE LIMITED TUV India Hosea, Burviny No. 42, 3/1 & 3/2, Siss, Tat Mutahle, Dat Pure - 411 021 CIN : UT4140MH1989PTC052930 Tel. : 002 - 67905000 / 01 Tol Hwe : 1800-200-2002 Email : pure@tuv-fond.com Website : www.3uv-nord.com/in
lame 8	Address of Customer	SEZ Biotech S				2007
		Cyrus Poonwa Pin Code: 412		пјап вк., Та	il Haveil_P	rune
leg No		: 3732/22-23				
A No.		: 0062202064				
	sample receipt	= 09 Jun 2022				
1.1	of analysis	: 15 Jun 2022 -			THERE.	
sample	: Drawn by				LOQ	TUV/04/SOP/017) Test Method
CIN-		te inte				
	Test N Sample Name : RAW Sampling Location: DM 09:06:2022 Discipline : Chemical & Accessibled Tests	WATER IF Feed (Phase II), 1	Results	Unit	CAN	o : 0062202054 uct Category : Water
Non 1	Sample Name : RAW Sampling Location: DN 09.06.2022	WATER IF Feed (Phase II), 1			CAN	o : 0062202054
Non	Sample Name : RAW Sampling Location: DM 09:06.2022 Discipline : Chemical & Accredited Tests Food Chemical	WATER IF Feed (Phase II), 1	Sampling Date	12	CAN	o : 0062202054 uct Category : Water
Non	Sample Name : RAW Sampling Location: DM 09:06:2022 Discipline : Chemical & Accredited Tests Food Chemical Carbonate Akalinity	WATER IF Feed (Phase II), 1	Sampling Date	mgi	CAN Prod.	o : 0062202054 uct Category : Water IS 3025 Part 23
Non 1 2	Sample Name : RAW Sampling Location: Di 09:06:2022 Discipline : Chemical & Accredited Tests Food Chemical Carbonate Akalinity Carbonate as CO3	WATER IF Feed (Phase II), 1	Sampling Date 82.6 82.6	mg1	CAN Prod.	o : 0062202054 ect Category : Water IS 3025 Part 23 In house methode
Non 1 2 3	Sample Name : RAW Sampling Location: Di 09:06:2022 Discipline : Chemical & Accredited Tests Food Chemical Carbonate Akalinity Carbonate as CO3 Bicarbonates	WATER AF Feed (Phase II), 1 L Biological	Sampling Date 82.6 82.6 103.1	mg1 mg1 mg1	CAN Produ	o : 0062202054 act Category : Water IS 3025 Part 23 In house methode APHA 23rd Edition
Non 1 2 3 4 5	Sample Name : RAW Sampling Location: DM 09:06:2022 Discipline : Chemical & Food Chemical Carbonate Alkalinity Carbonate as CO3 Bicarbonates Free CO2 Total nitrogen by Kjeld Heavy Metals	WATER AF Feed (Phase II), 1 L Biological	82.6 82.6 103.1 6.0 < 0.1	mg1 mg1 mg1 mg1 mg1	CAN Produ	o : 0062202054 act Category : Water IS 3025 Part 23 In house methode APHA 23rd Edition IS 3025 Part 61 (RA 2008) TUV/02/SOP/002
Non 1 2 3 4 5 6	Sample Name : RAW Sampling Location: DM 09:06:2022 Discipline : Chemical & Food Chemical Carbonate Akalinity Carbonate as CO3 Bicarbonates Free CO2 Total nitrogen by Kjeld Heavy Motals Silica	WATER AF Feed (Phase II), 1 L Biological	82.6 82.6 103.1 6.0 < 0.1 25.68	mgi mgi mgi mgi mgi mgiL	CAN Produ - - - - - - - - - - -	o : 0062202054 act Category : Water IS 3025 Part 23 In house methode APHA 23rd Edition IS 3025 Part 61 (RA 2008) TUV/02/SOP/002 AS PER APHA 3125,23 RD EDITION
Non 1 2 3 4 5	Sample Name : RAW Sampling Location: DM 09:06:2022 Discipline : Chemical & Food Chemical Carbonate Akalinity Carbonate Akalinity Carbonate Akalinity Carbonate Akalinity Carbonate SCO3 Bicarbonates Free CO2 Total nitrogen by Kjeld Heavy Motals Silica Strontium	WATER AF Feed (Phase II), 1 L Biological	82.6 82.6 103.1 6.0 < 0.1	mg1 mg1 mg1 mg1 mg1	CAN Produ	o : 0062202054 act Category : Water IS 3025 Part 23 In house methode APHA 23rd Edition IS 3025 Part 61 (RA 2008) TUV/02/SOP/002
Non. 1 2 3 4 5 6	Sample Name : RAW Sampling Location: DM 09:06:2022 Discipline : Chemical & Food Chemical Carbonate Akalinity Carbonate as CO3 Bicarbonates Free CO2 Total nitrogen by Kjeld Heavy Motals Silica	WATER AF Feed (Phase II), 1 L Biological	82.6 82.6 103.1 6.0 < 0.1 25.68	mgi mgi mgi mgi mgi mgiL	CAN Produ - - - - - - - - - - -	o : 0062202054 act Category : Water IS 3025 Part 23 In house methode APHA 23rd Edition IS 3025 Part 61 (RA 2008) TUV/02/SOP/002 AS PER APHA 3125,23 RD EDITION
Non 1 2 3 4 5 6 7 8	Sample Name : RAW Sampling Location: DM 09:06:2022 Discipline : Chemical & Accredited Tests Food Chemical Carbonate Akalinity Carbonate as CO3 Bicarbonates Free CO2 Total nitrogen by Kjeld Heavy Metals Silica Strontum Minerals Phosphate Water Analysis	WATER AF Feed (Phase II), 1 L Biological	82.6 82.6 103.1 6.0 < 0.1 25.68 0.13 6.30	mgi mgi mgi mgi mgiL mgiL mgiL	CAN Produ - - - - - - - - - - - - - - - - - - -	o : 0062202054 act Category : Water IS 3025 Part 23 In house methode APHA 23rd Edition IS 3025 Part 61 (RA 2008) TUV/02/SOP/002 AS PER APHA 3125,23 RD EDITION AS PER APHA 3125,23 RD EDITION AS PER APHA 3125,23 RD EDITION
Non 1 2 3 4 5 6 7 8 9	Sample Name : RAW Sampling Location: DM 09:06:2022 Discipline : Chemical & Accredited Tests Food Chemical Carbonate Akalinity Carbonate as CO3 Bicarbonates Free CO2 Total nitrogen by Kjeld Heavy Motals Silica Strontum Minerals Phosphate Water Analysis Temperature	WATER AF Feed (Phase II), 1 L Biological	82.6 82.6 103.1 6.0 < 0.1 25.68 0.13 6.30 26.0	mgi mgi mgi mgi mgi mgi mgi mgi mgi mgi	CAN Produ - - - - - - - - - - - - - - - - - - -	o : 0062202054 act Category : Water IS 3025 Part 23 In house methode APHA 23rd Edition IS 3025 Part 61 (RA 2008) TUV/02/SOP/002 AS PER APHA 3125,23 RD EDITION AS PER APHA 3125,23 RD EDITION AS PER APHA 3125,23 RD EDITION IS 3025 Part 9
Non 1 2 3 4 5 6 7 8 9 10	Sample Name : RAW Sampling Location: DM 09:06:2022 Discipline : Chemical & Accredited Tests Food Chemical Carbonate Alkalinity Carbonate as CO3 Bicarbonates Free CO2 Total nitrogen by Kjeld Heavy Motals Silica Strontum Minerals Phosphate Water Analysis Temperature Reactive Silica	WATER AF Feed (Phase II), 1 Biological	82.6 82.6 103.1 6.0 < 0.1 25.68 0.13 6.30 26.0 6.0	mg1 mg1 mg1 mg1 mg1 mg1 mg1 mg1 mg1 deg.cel mg1	CAN Produ - - - - - - - - - - - - - - - - - - -	o : 0062202054 act Category : Water IS 3025 Part 23 In house methode APHA 23rd Edition IS 3025 Part 61 (RA 2008) TUV/02/SOP/002 AS PER APHA 3125,23 RD EDITION AS PER APHA 3125,23 RD EDITION AS PER APHA 3125,23 RD EDITION IS 3025 Part 9 IS 3025 Part 35
Non 1 2 3 4 5 6 7 8 9 9 10 11	Sample Name : RAW Sampling Location: DM 09:06:2022 Discipline : Chemical & Accredited Tests Food Chemical Carbonate Alkalinity Carbonate as CO3 Bicarbonates Free CO2 Total nitrogen by Kjeld Heavy Metals Silica Strontum Minerals Phosphate Water Analysis Temperature Reactive Silica Total organic carbon (1)	WATER AF Feed (Phase II), 1 Biological	Sampling Date 82.6 82.6 103.1 6.0 < 0.1 25.68 0.13 6.30 26.0 6.0 Nil	mgi mgi mgi mgi mgi mgi mgi mgi deg.cel mgi Si	CAN Produ - - - - - - - - - - - - - - - - - - -	o : 0062202054 act Category : Water IS 3025 Part 23 In house methode APHA 23rd Edition IS 3025 Part 61 (RA 2008) TUV/02/SOP/002 AS PER APHA 3125,23 RD EDITION AS PER APHA 3125,23 RD EDITION AS PER APHA 3125,23 RD EDITION IS 3025 Part 9 IS 3025 Part 35 HS/NABL/WA/13
Non 1 2 3 4 5 6 7 8 9 10	Sample Name : RAW Sampling Location: DM 09:06:2022 Discipline : Chemical & Accredited Tests Food Chemical Carbonate Alkalinity Carbonate as CO3 Bicarbonates Free CO2 Total nitrogen by Kjeld Heavy Motals Silica Strontum Minerals Phosphate Water Analysis Temperature Reactive Silica	WATER AF Feed (Phase II), 1 Biological	82.6 82.6 103.1 6.0 < 0.1 25.68 0.13 6.30 26.0 6.0	mg1 mg1 mg1 mg1 mg1 mg1 mg1 mg1 mg1 deg.cel mg1	CAN Produ - - - - - - - - - - - - - - - - - - -	o : 0062202054 act Category : Water IS 3025 Part 23 In house methode APHA 23rd Edition IS 3025 Part 61 (RA 2008) TUV/02/SOP/002 AS PER APHA 3125,23 RD EDITION AS PER APHA 3125,23 RD EDITION AS PER APHA 3125,23 RD EDITION IS 3025 Part 9 IS 3025 Part 35

PROJECT NAME	: Rainwater Harvesting Project by SIIPL, Pune India.
UCR Scope	: RoU Scope 2: Measures for conservation and storage of unutilized
	water for future requirements.
PCNMR Prepared on	: 12/06/2023.
Geo Tag	: 18.514260, 73.960375
Latitude	: 18°30'51.336"N
Longitude	: 73° 57'37.35"E
Project Commissioning Date	: 15/03/2017

Project Capacity (MLD / Cubic Meter)	06 MLD (02 MLD or 2000 m ³ each)
Name of Tank (Commissioning Date)	Rainwater Harvesting Tank-1 (15/03/2017),
	Rainwater Harvesting Tank-2 (15/03/2017),
	Rainwater Harvesting Tank-3 (15/05/2021),
Catchment Area / Roof Top Locations	Crushing Shed Roof, LPG Godown Roof, M SEZ 1
	Cold Room Roof, M SEZ 3 Cold Room Roof, M
	SEZ 4 Roof, Other Gas Storage Shed Roof,
	Solvent Warehouse Roof and Ground Roof.



Rainfall and Recharge


Monthly rainfall data of Pune city from 2017 to 2022 were analysed as per the details available in the CRIS Hydromet Division.

		o. are the Spaces :	1000				e long p	eriod avi	erages o	f rainfall	for the Di	strict.						India M Ministry	met Div eteorologi Of Earth Ihi-110 003	cal Depa Science:			Pure a											
YEAR	r jan feb		JAN		JAN		JAN		JAN		JAN		JAN]	MAR	1	PR	M	AY	J	UN	J	UL	A	UG	SI	CPT	0	CT	N	VOV	D	EC
	R/F	*DEP	R/F	*DEP	R/F	*DEP	R/F	*DEP	R/F	*DEP	R/F	*DEP	R/F	*DEP	R/F	*DEP	R/F	%DEP	R/F	%DEP	R/F	%DEP	R/F	*DEP										
2017	0.0	-100	0.0	-100	0.0	-100	0.0	-100	24.6	-10	289.1	84	512.5	64	290.2	29	211.0	27	116.0	33	13.9	-43	0.7	-88										
2018	0.0	-100	0.0	-100	0.7	-58	5.4	-29	6.8	-75	185.6	18	486.6	55	268.9	19	58.7	-65	33.8	-61	20.0	-18	0.0	-100										
2019	0.0	-100	0.0	-100	0.0	-100	7.0	14	0.0	-100	193.1	10	770.4	149	521.4	137	318.7	104	209.1	167	32.7	40	0.7	-90										
2020	0.0	-100	0.0	-100	5.9	266	0.2	-98	31.2	39	260.4	48	218.8	-29	534.6	143	187.1	20	236.2	201	2.7	-89	4.0	-37										
2021	30.4	4241	2.1	320	2.5	53	16.8	175	51.5	130	227.1	29	389.0	26	83.3	-62	194.8	25	94.8	21	40.4	73	68.1	964										

Year	Rainfall (mm)
2017	1458
2018	1066.5
2019	2053.1
2020	1481.1
2021	1200.8
2022	1121.3
Total	8380.8

Baseline scenario

The baseline scenario is the situation where, in the absence of the project activity, unutilized water flows uncollected into drains and is not conserved/harvested into storage systems within the project boundary and remains unutilized. Baseline scenario, if not directly measurable, is calculated by using

Harvested water or Volume of water utilized (m^3) = Area of Catchment/Roof/Collection Zone (m^2) X Amount of rainfall (mm) X Runoff coefficient *Uncertainty Factor (1-0.21 = 0.79).

Different Surfaces	Runoff Coefficient (K)
Roof inclined (Sloping)	0.95

The baseline scenario is the situation where, in the absence of the project activity, the PP would have utilized water from multiple bore wells within the project boundary which would have depleted the local groundwater resources (aquifers) and/or diverted existing safe drinking water resources from the surrounding residential area.

Hence the baseline scenario, is:

"the net quantity of rainwater runoff harvested and stored per year"

Level of Assurance:

The verification report is based on onsite audit, information collected through interviews, supporting documents provided during the verification, Project Concept Note - Monitoring Report (PCNMR) submitted to SQAC. The verification opinion is assured provided the credibility of all the above.

Verification Methodology:

Review of the following documentation was done by SQAC Verifiers, Mr. Santosh Nair and Ms. Sheetal Wader, who are experienced in such projects.

- Project Concept Note / Monitoring Report (PCNMR)
- Commissioning Certificate
- Water Lab Test Report
- Master Plan Layout

Sampling:

Not applicable

SQ.MTR.

SQ.MTR.

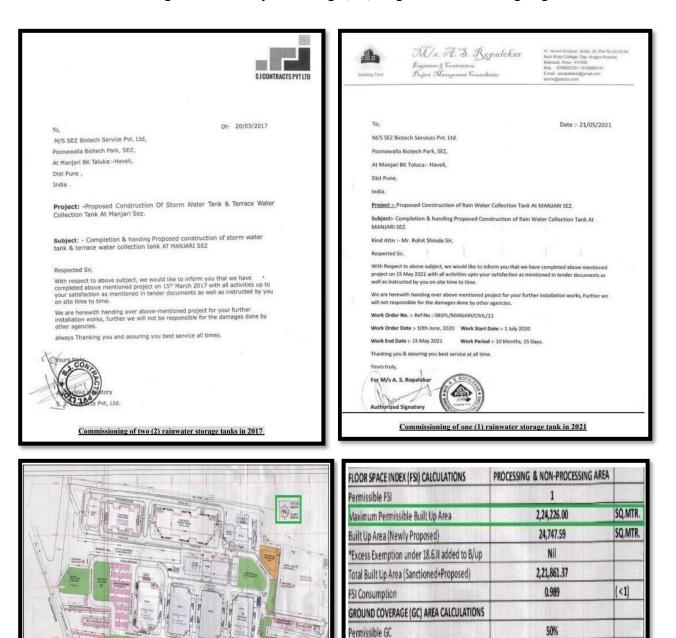
SQ.MTR.

SQ.MTR.

(<50%)

1,12,113.00

58,826.08


7,742.37

66,568.45

59.38%

Persons interviewed:

- 1. Mr. Santosh Arankalle : Sr. General Manager, M/s Serum Institute of India Pvt Ltd.
- 2. Mr. Baban Chaudhari : Sr. Manager Engineering, M/s Serum Institute of India Pvt Ltd
- 3. Mr. Saurabh Sainger
- : Sr. Project Manager, M/s. Egis India Consulting Engineers Pvt Ltd.

Maximum Permissible GC Area

GC Area (Existing)

GC Area (Proposed)

GC Consumption

Rainwater Collection Tanks

MASTER LAYOUT PLA

Net Total Ground Coverage

Corrective Action Requests (CARs)

Not applicable as no non-conformities has been evidenced.

Applied methodologies:

Verification criteria is as per the requirements of UCR RoU program for the scope – 2.

Applicability of double counting emission reductions

Currently not applicable for water credits.

Issuance Period: (05 years, 09 months) – 15/03/2017 to 31/12/2022

According to the UCR RoU Standard principles, the project activity accomplishes the following:

- Increases the sustainable water yield in areas where over development has depleted the aquifer
- **Collect unutilized water or rainwater and preserve it for future use**
- Conserve and store excess water for future use

Harvested water or Volume of water utilized (m^3) = Area of Catchment/Roof/Collection Zone (m^2) X Amount of rainfall (mm) X Runoff coefficient *Uncertainty Factor (1-0.21 = 0.79).

Different Surfaces	Runoff Coefficient (K)	
Roof inclined (Sloping)	0.95	

Annual RoU calculation:

Year	Catchment Area	Runoff Coefficient (K)	Uncertainty Factor	(RoUs)
	А	В	С	(A*B*C)/1000
2017	310575.4326	0.95	0.79	245354
2018	227180.1776	0.95	0.79	179472
2019	437340.4806	0.95	0.79	345498
2020	315496.0722	0.95	0.79	249241
2021	255788.0518	0.95	0.79	202072
2022	238853.3831	0.95	0.79	188694
			Total	14,10,331

Conclusions:

Based on the audit conducted on the basis of UCR Protocol, which draws reference from UCR RoU program, the documents submitted during the verification including the data, Project Concept Note (PCNMR), SQAC is able to certify that the Water Credits from the project -: Rainwater Harvesting Project by SIIPL, Pune, India, (UCR ID – 346) for the period 15/03/2017 to 31/12/2022 amounts to **14,10,331** <u>RoUs</u>

Santosh Nair Lead Verifier (Signature)

)

Date: 28/08/2023

Sheetal Wader Verifier (Signature)

Praful Shinganapurkar Senior Internal Reviewer (Signature)